
COOL: A Cloud-Optimized Structure for MPI Collective Operations

Mohammed Alfatafta, Zuhair AlSader, Samer Al-Kiswany

Cheriton School of Computer Science

University of Waterloo, Canada

{maaalfat, zalsader, alkiswany}@uwaterloo.ca

Abstract— We present COOL, a simple and generic structure for
MPI collective operations. COOL enables highly efficient
designs for all collective operations in the cloud. We then
present a system design based on COOL that implements
frequently used collective operations. Our design efficiently
uses the intra-rack network while minimizing cross-rack
communication, thus improving the application performance
and scalability. We use recent software-defined networking
capabilities to build optimal network paths for I/O intensive
collective operations. Our analytical evaluation shows that our
design imposes the least possible network overhead across
racks. Furthermore, when compared with OpenMPI and
MPICH, our design reduces the number of steps to only three,
decreases the number of exchanged messages by a factor of N,
the total number of processes, and reduces the network load by
up to an order of magnitude. These significant improvements
come at the cost of a modest increase in the computation load on
a few processes.

Keywords – MPI, collective operations, communication patterns,
cloud, software-defined networking

I. INTRODUCTION

Cloud infrastructure is increasingly being adopted as a
platform for high-performance computing (HPC) science and
engineering applications [1, 2, 3, 4, 5, 6], with major research
organizations embracing the new platform [7, 8, 9] and cloud
providers offering clusters targeting HPC applications
[10, 11]. For HPC applications, the message passing interface
(MPI) [12] and its classical implementations (e.g.,
OpenMPI [13] and MPICH [14]) remain a popular
communication middleware. Among MPI operations,
collective operations (e.g., broadcast, reduce, scatter, and
gather) are the most I/O intensive and performance critical.

Although classical MPI implementations can be deployed
at cloud data centers, they are inefficient [7]. Historically, MPI
applications use large-scale supercomputer machines that are
customized to support MPI collective operations (e.g., IBM
BlueGene [15] and Cray XC40 [16]). Supercomputers use
over-provisioned special network topologies (e.g., 3D
torus [17], 5D torus [18], and Dragonfly [16]), and have
interconnections optimized for I/O-intensive operations; for
instance, IBM’s BlueGene comes with a network dedicated to
collective operations and another one optimized for fast
barriers [17, 19]. Classical MPI implementations are
optimized to exploit these capabilities. On the other hand, data
center networks are drastically different from
supercomputers’: they do not provide specialized support for
collective operations, and they adopt a tree topology [20] that
is well provisioned within racks, but is oversubscribed
between racks. Oversubscription ratios, the ratio of the
bandwidth within a rack to the bandwidth across racks, of

4 times and up to 10 times are common [20]. Consequently,
reducing the communication across racks is key to achieving
higher performance and scalability.

The fundamental reason for the poor performance of
classical implementations of MPI collective operations in the
cloud is that they are implemented at the application layer
using network-oblivious communication patterns [13, 14]. For
instance, they propagate a broadcast message between
processes following a tree pattern, or perform a reduction
following a ring pattern. These patterns do not differentiate
between local or cross-rack communications, and hence do
not exploit the inherent locality between collocated processes
on the same node or the same rack of nodes. Consequently,
they generate high overhead on the network across racks.

In this paper, we present the cloud-optimized collective
structure (COOL) for collective operations. COOL is a simple
yet generic structure, as it can implement all collective
operations. COOL divides the group of processes involved in
a collective operation into a three-level hierarchy of
subgroups: node level, rack level, and data center level. All
processes collocated on a node form a subgroup with one
process being the subgroup leader (or node leader). All node
leaders in a rack form a subgroup with one of them acting as
a rack leader. Finally, all rack leaders are part of one data-
center-wide subgroup. Collective operations are composed of
three parts with each part running at one of the three levels.
Each level can use the communication pattern that is optimal
for it. This approach provides the MPI designer with explicit
control over the communication performed within a node,
within a rack, and across racks.

Unlike classical implementations, COOL is flexible.
Communication patterns typically present a tradeoff between
the number of steps needed, the number of messages sent, and
the generated network and process loads. COOL allows
exploring this tradeoff by combining more than one pattern
and allows selecting the best pattern for every level (i.e.,
node, rack, and data center levels) of the data center
infrastructure.

To demonstrate the feasibility of our approach, we present
a system architecture that embodies COOL, and detail the
design for frequently used collective operations. We focus on
the following collective operations: MPI_Bcast,
MPI_Reduce, MPI_Allreduce, MPI_Gather, MPI_Allgather,
and MPI_Scatter. We select these operations because they are
the most complex, the most I/O intensive, and the most
frequently used. Characterization studies of MPI applications
[21, 22] indicate that these operations consume more than
65% of the total time of all collective operations. The
proposed design discovers the network topology and uses this
information to create a subgroup per rack and to select rack

leaders. Furthermore, the design leverages the software-
defined networking (SDN) [23] capabilities of modern
switches to build a hierarchy of multicast trees to support
MPI_Bcast, MPI_Allreduce, and MPI_Allgather.

Our analysis shows that COOL-based collective
operations impose the least possible network overhead across
racks. Furthermore, we compare our design with OpenMPI
and MPICH in terms of the number of steps that each
operation takes, the number of exchanged messages, and the
generated load on the network and nodes. Our evaluation
reveals that COOL-based design brings significant
performance gains: it completes all operations in three steps,
it reduces the number of messages across racks to the bare
minimum, it reduces the total number of messages by a factor
of N in most cases, where N is the number of processes, and it
reduces the generated network overhead by up to an order of
magnitude. These improvements come at a cost: a modest
increase in the load of leader processes.

The rest of this paper is organized as follows. In Section II
we present the classical design of the most frequently used
MPI collective operations. We present the COOL structure
and a system design that embodies it in Section III. We present
the analytical evaluation in Section IV. We discuss related
work in Section V, and conclude in Section VI.

II. BACKGROUND

In this section, we present frequently used collective
operations, their communication patterns, and an overview of
the modern data center architecture.

A. Most Frequently Used Collective Operations

Collective operations are the most network-intensive
operations in MPI; they involve communicating with all the
processes in a communication group, typically over many
steps. The following list enumerates frequently used
collective operations. Characterization studies of MPI
applications [21, 22] indicate that the following operations
consume more than 65% of the CPU time that all MPI
collective operations use.

• MPI_Reduce: applies an aggregation operation (e.g.,
summation and multiplication) to data items distributed
across a group and makes the result available in one
process only.

• MPI_Allreduce: similar to MPI_Reduce, but the final
result is available in all processes in a group.

• MPI_Gather: collects data items from all processes in a
group, and concatenates them into an array in one
process.

• MPI_Allgather: similar to MPI_Gather, but the final
array is available in all processes in a group.

• MPI_Bcast: broadcasts a message from one process to all
processes in a group.

• MPI_Scatter: chunks and distributes an array from one
process to all processes in a group.

B. Common Communication Patterns

Classical MPI implementations implement collective
operations at the application layer using network-oblivious
communication patterns. Typically, MPI implementations
have multiple implementations for the same operation, with
each using a different communication pattern [13, 14].
Nevertheless, all classical patterns are network oblivious;
they assume that the communication cost between any two
processes is equal, regardless of the network topology. This
assumption leads to high inefficiency in tree-based
topologies. Communication patterns use logical addresses
(a.k.a. ranks): consecutive numbers that identify processes
within a group. The following is a list of common
communication patterns used in OpenMPI and MPICH:

• Recursive doubling is used in MPI_Allreduce and
MPI_Allgather. It takes log 𝑁 steps, and in every step i,

every process exchanges values with the process 2𝑖 ranks
away (Figure 1.a). N messages are sent per step.
Recursive doubling uses 𝑁 log 𝑁 messages to complete.

• Ring is used in MPI_Allreduce and MPI_Allgather. The
ring pattern organizes the processes in a ring. It takes
𝑁 − 1 steps, and in each step, every process receives a
message from its predecessor in the ring and sends a
message to its successor. The ring pattern requires
𝑁(𝑁 − 1) messages to complete.

• Binomial tree is used in MPI_Bcast, MPI_Gather,
MPI_Scatter, and MPI_Reduce. It takes log 𝑁 steps to
complete. For instance, in every step of MPI_Gather
(Figure 1.b), processes are divided into two halves; one
half sends the data it gathered so far to the other half. The
receiving half repeats this procedure until a single process
is left. That process will have all data items from all
processes. Binomial tree pattern takes 𝑁 − 1 messages to
complete.

• Rabenseifner’s pattern [24] is used in MPI_Reduce and
MPI_Allreduce. Rabenseifner’s pattern combines two

(a)

(b)

(c)

(d)

Figure 1. Collective communication patterns: (a) recursive
doubling, (b) binomial tree, (c) Bruck’s, and (d) COOL with the
parallel pattern. Circles represent processes, numbers indicate the
processes ranks, and arrows represent the direction of
communication. Double arrows indicate that the two processes
exchange messages. Numbers on arrows in (d) represent the three
steps of a COOL-based MPI_Bcast.

patterns: first, it uses the recursive halving pattern
(similar to recursive doubling), and then, it uses the
binomial tree pattern for MPI_Reduce, or the recursive
doubling pattern for MPI_Allreduce. Rabenseifner’s
pattern takes 2 log 𝑁 steps to complete, and it exchanges
𝑁 + 𝑁 log 𝑁 and 2𝑁 log 𝑁 messages for MPI_Reduce
and MPI_Allreduce, respectively.

• Bruck’s pattern [25] is used in MPI_Allgather. It takes
log 𝑁 steps, and in every step 𝑖, every process 𝑝 sends its
data and all of the data it has received so far to the process

with rank (𝑝 − 2𝑖) 𝑚𝑜𝑑 𝑁 (Figure 1.c). N messages are
sent in every step. This pattern takes 𝑁 log 𝑁 messages to
complete.

C. Target Deployment

Modern data centers adopt a tree-based topology [20, 26], in
which nodes are organized in racks (e.g., each rack has 48
nodes) with each connected to the data center through a top of
the rack (ToR) switch. ToRs are connected via two-tier
switching fabric of aggregation and core switches. The inter-
rack fabric is typically oversubscribed, i.e., the bandwidth
across racks is a fraction of the bandwidth available within a
rack. Oversubscription ratios of 4 times to 10 times are
common [20]. Consequently, increasing communication
locality within racks is key to achieving higher performance
and scalability.

Furthermore, modern data centers adopt SDN-capable
switches. This new networking paradigm facilitates the
external control of network operations. The OpenFlow
standard API [23] provides per-packet control of network
operations. Developers can use this capability to build
network-optimal multicasting trees for I/O intensive broadcast
operations.

Large-scale science applications utilize hundreds to
thousands of nodes spanning tens of racks. Unfortunately,
classical collective implementations are network oblivious, as
they do not differentiate between communication within a
rack or across racks, and they do not exploit the recent SDN
capability to optimize the data paths for collective operations.

COOL enables collective operation designs that better fit
the data center infrastructure than classical collective
implementations. In particular, it enables the utilization of the
access locality between processes collocated on a node, or on
nodes on the same rack, and enables the exploitation of the
SDN capability to build efficient network paths for multicast-
based data transfers within and across racks.

III. SYSTEM DESIGN

In this section, we first introduce the COOL structure, then we
present a new communication pattern that better fits COOL
small subgroups, as well as a system architecture that
embodies COOL. Finally, we discuss the design of the most
frequently used collective operations.

A. COOL

The COOL structure adopts a hierarchical approach to
perform collective operations. COOL divides the
communication group into a set of subgroups (Figure 1.d).

Each subgroup has a leader process. All collocated processes
on a node form a subgroup with one process being the
subgroup leader (or node leader). All node leaders in a rack
form a subgroup with one of them acting as a rack leader.
Finally, all rack leaders are part of one data-center-wide
subgroup. Subgroups are small, consisting of a few tens of
processes. During the collective operation, a process can
exchange messages with only the processes in its subgroup.
Only a subgroup leader can exchange messages with other
subgroup leaders at its level.

Typically, a COOL collective operation proceeds in
phases. The order of these phases depends on the collective
operation. First, part of the collective operation is performed
in parallel in all node-level subgroups. Second, the node
leaders perform part of the operation per rack. Third, rack
leaders complete the operation across racks. Finally, the
result is propagated down the hierarchy to a specific process
or to all processes. COOL does not dictate which
communication pattern should be used within a subgroup; an
implementer can choose different communication patterns
within and across subgroups. This flexibility allows selecting
the best pattern for each subgroup. For instance, an
implementer may choose, for the rack-level subgroup, a
pattern that completes in a few steps but imposes a high
network overhead, and may choose a more network
conscience pattern for the cross-rack level even if it slightly
increases the number of steps.

As an example, consider the MPI_Bcast operation, and,
for simplicity, assume one process per node. In a COOL
MPI_Bcast, the source process of the broadcast message
sends the message to its rack leader (phase 1 in Figure 1.d).
Then, the leader multicasts the message to the other rack
leaders (phase 2). Finally, all leaders multicast the message
to the processes in their racks (phase 3). Different
communication patterns can be employed to perform phase
2 or 3.

The main advantage of COOL is that it provides explicit
control of the communication within and across racks, and
enables optimizing the communication at every level of the
operation. This approach facilitates tailoring communication
patterns to minimize the communication between racks.

B. Parallel Pattern

We present the parallel communication pattern, a simple
pattern that efficiently implements all collective operations
for small groups. In the parallel pattern, all processes
exchange messages with a single process that does all of the
necessary computation. For instance, in a parallel
MPI_Reduce, all processes send their data to a single process
that performs the reduction operation. Similarly, in a parallel
MPI_Bcast, a single process sends a message to all processes
in its group. The parallel pattern completes any collective
operation in one or two steps, but it does not scale to large
deployments.

The parallel pattern can be efficiently implemented in
small groups of a few tens of processes, as is the case in
COOL subgroups. For processes collocated on the same
node, the parallel pattern can be efficiently implemented

using shared memory. For operations that involve sending the
same message to multiple recipients the parallel pattern can
exploit SDN capabilities to construct network-optimal
multicast trees.

C. COOL Collective Operations

COOL is generic; it can be used to optimize all collective
operations for cloud deployments. The following list presents
a COOL design for the frequently used collective operations
discussed in section II.A. Although COOL can employ
various communication patterns at different levels, for
simplicity, we present a design using the parallel pattern at
all levels. We omit the discussion about the communication
between processes collocated on the same node, as it can be
efficiently implemented with the parallel pattern by using
shared memory, and it has, relatively, a negligible impact on
performance. Hence, we assume a single process per node.

In the descriptions below, the root process refers to the
source process sending a broadcast message in MPI_Bcast,
or the destination process in MPI_Reduce and MPI_Gather.
The root leader refers to the leader of the rack that contains
the operation root process. We also present the number of
messages exchanged in every operation. The system has N
nodes, with each running a single process. The nodes are
organized in r racks, with r rack leaders.

• MPI_Reduce: (1) Each process sends its value to its rack
leader (using 𝑁 − 𝑟 messages). Each leader reduces the
values of its subgroup to an intermediate value. (2) All
leaders send their intermediate values to the root leader
(using 𝑟 − 1 messages). The root leader reduces all the
values it receives to a single final value. Finally, (3) the
root leader forwards the final value to the root process (in
a single message). This approach requires a total of N
messages.

• MPI_Allreduce: (1) Each process sends its value to its
rack leader (𝑁 − 𝑟 messages). Each leader reduces the
values of its subgroup to an intermediate value. (2) All
leaders multicast their intermediate values to all other
leaders (𝑟 multicast messages). Every leader reduces all
of the values it receives to a single final value. Finally, (3)
every leader multicasts the final value to its rack
subgroup (𝑟 multicast messages). This approach requires
a total of 𝑁 − 𝑟 messages and 2r multicast messages.

• MPI_Gather: (1) Each process sends its value to its rack
leader (𝑁 − 𝑟 messages). Each leader concatenates the
values of its subgroup into a subarray. (2) All leaders send
their subarrays to the root leader (𝑟 − 1 messages). The
root leader concatenates all the subarrays it receives into
a single final array. Finally, (3) the root leader forwards
the final array to the root process (in a single message).
This approach requires N messages in total.

• MPI_Allgather: (1) Each process sends its value to its
rack leader (𝑁 − 𝑟 messages). Each leader concatenates
all the values of its subgroup into a subarray. (2) All
leaders multicast their subarrays to all other leaders (r
multicast messages). Every leader concatenates all of the
subarrays it receives into a single final array. Finally, (3)
every leader multicasts the final array to its rack subgroup

(r multicast messages). This approach requires the total
of 𝑁 − 𝑟 messages and 2r multicast messages.

• MPI_Bcast: (1) The root process sends its value to the
root leader (one message). (2) The root leader multicasts
the value to all other leaders (one multicast message).
Finally, (3) every leader multicasts the value to its
subgroup (r multicast messages). This approach requires
one message and 𝑟 + 1 multicast messages.

• MPI_Scatter: (1) The root process sends its array to the
root leader (one message). (2) The root leader chunks the
array into r subarrays, keeps one subarray and send a
subarray to every leader (𝑟 − 1 messages). Finally, (3)
every leader, including the root leader, sends the
individual data items from its subarray to every process
in its subgroup (𝑁 − 𝑟 messages). This approach requires
a total of N messages.

We note that all operations complete in only three steps, and
use the network across racks only in step 2. The next section
extends our analysis and compares our design with OpenMPI
and MPICH implementations.

Figure 2. System Architecture. Bold lines represent network

connections. Solid arrows represent communication messages.

Dashed arrows represent OpenFlow control messages.

D. System Architecture

The goal of this section is to demonstrate the feasibility of
building an MPI implementation that embodies COOL. Our
system architecture has four components (Figure 2): an MPI
manager, rack leaders, a network controller, and a COOL
library. The MPI manager controls the MPI application
lifecycle from allocating resources, to bootstrapping the MPI
processes, to terminating the application. All processes are
grouped into subgroups at the node, rack, and data center
levels. The network controller is an OpenFlow-based
controller that manages all the switches in the deployment.
The network controller installs packet-forwarding rules to
create a hierarchy of multicast trees for each communication
group. The COOL library implements all collective
operations as discussed in the previous subsection.

Bootstrap process. As depicted in Figure 2, when a client
starts a new job, it sends the job parameters to the MPI

manager (step 1 in Figure 2). The manager allocates a number
of nodes (2). Then, the network controller configures the
network for the MPI job (3). The controller first discovers the
network topology connecting the allocated nodes using the
Link Layer Discovery Protocol (LLDP) protocol [27]. The
discovery step identifies the racks, assigns them serial
identification (ID) numbers, and discovers which nodes are
in each rack (4). Then, the controller divides the group of MPI
processes into per-node and per-rack subgroups.
Additionally, for each subgroup, it selects as the leader the
process with the smallest rank in the subgroup. Finally, (5)
the manager runs the MPI processes on the allocated nodes.
The manager informs every MPI process of the node and rack
leaders, as well as the rank and rack ID of all other processes.

Group creation. When an MPI application creates a new

communication group (6) the leader of the first rack (i.e., rack

0) informs the controller of the new group. As in the bootstrap

process, the controller divides the processes into subgroups,

with each one of them containing all the processes collocated

in the same rack, and chooses a leader for each subgroup. The

controller also creates, using OpenFlow, a multicast tree in

every rack, and creates a multicast tree for rack leaders across

racks.

IV. EVALUATION

In this section, we analytically compare COOL collective
operations with OpenMPI and MPICH. We focus our
evaluation on four metrics: the number of steps an operation
takes, the number of messages exchanged in total and across
racks, the generated network load in total and across racks,
and the maximum generated load on processes.

Assumptions. To simplify our analysis, we assume that all
COOL subgroups are equal in size and that the total number
of nodes and the number of nodes in every rack is a power of
two. We assume that every node runs a single MPI process, as
communication between collocated processes on the same
node adds a relatively negligible overhead.

The performance of the classical implementations of
collective operations is affected by how the processes are
ranked, which affects the communication order. In our
evaluation, we select the best ranking that minimizes the
number of cross-rack messages for each operation-pattern
combination. We note that it is infeasible for classical MPI
implementations to use these best rankings because a
communication group typically uses multiple collective
operations, each of which has a different best ranking, yet
processes in a group have fixed ranks. Collective operations
have different best rankings even if they use the same pattern.
For instance, the best ranking for the binomial tree pattern in
MPI_Bcast is different than the best ranking used for the
binomial tree in MPI_Reduce.

For COOL, we analyze the COOL-Parallel-Parallel
(COOL-P-P) that uses the parallel pattern within and across
racks. Section IV.E discusses a COOL-based design that uses
the binomial tree and the recursive doubling patterns.

A. Operation Latency

Each step includes a communication phase, which consists of
a concurrent exchange of data with one or more processes,
and a computation phase for MPI_Reduce and
MPI_Allreduce. Table 1 summarizes our results (section II.B
and section III.C present a sketch of our analysis). Table 1
shows the total number of steps that various implementations
of the collective operations require, and shows the number of
steps that use the inter-rack links (Table 2 explains the
parameters used in Table 1). Classical implementations take
from log 𝑁 to 𝑁 steps to complete with log r to N of the steps
using the network across racks. COOL-P-P operations
complete in three steps, with only one step using the network
across racks. This is a byproduct of using the parallel pattern,
as it can complete its part in a single step, and the hierarchical
design, as it confines the cross-rack communication to a
single step.

Obviously, a step in the parallel pattern has a higher
overhead than a step in the other patterns. A process in the
classical patterns exchanges messages with one or two

Table 1. An analytical comparison of COOL-based collective

operations against classical implementations. COOL-P-P uses the

parallel pattern for communication within and across racks. COOL-

B-R uses the binomial tree pattern within a rack and recursive

doubling pattern across racks. The analysis assumes the best

ranking for classical implementations which achieves the least

possible cross-rack communication.

Op. Pattern

of steps Number of messages

Total
Across

racks
Total Across racks

R
ed

u
ce

 COOL-P-P 3 1 𝑁 𝑟 − 1

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1

Rabenseifner 2 log 𝑁 2 log 𝑟 NlogN +N–1 𝑁 log 𝑟+r–1

A
ll

re
d
u

ce

COOL-P-P 3 1 N–r+rr+𝑟𝑘 𝑟𝑟

COOL-B-R log 𝑁+1 log 𝑟 N–r+rlogr+𝑟𝑘 𝑟 log 𝑟

Ring 𝑁 − 1 𝑁 − 1 𝑁(𝑁 − 1) 𝑁 𝑟

Recursive
doubling

log 𝑁 log 𝑟 𝑁 log 𝑁 𝑁 log 𝑟

Rabenseifner 2 log 𝑁 2 log 𝑟 2𝑁 log 𝑁 2𝑁 log 𝑟

G
at

h
er

COOL-P-P 3 1 𝑁 𝑟 − 1

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1

A
ll

g
at

h
er

COOL-P-P 3 1 N–r+rr+rk 𝑟𝑟

Ring 𝑁 − 1 𝑁 − 1 𝑁(𝑁 − 1) 𝑁 𝑟

Recursive
doubling

log 𝑁 log 𝑟 𝑁 log 𝑁 𝑁 log 𝑟

Bruck log 𝑁 log 𝑁 𝑁 log 𝑁 𝑁 log 𝑟+N–r

B
ca

st

COOL-P-P 3 1 𝑟𝑘 + 1𝑟 + 1 1𝑟

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1

S
ca

tt
er

COOL-P-P 3 1 𝑁 𝑟 − 1

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1

Table 2. Analytical model parameters.

Symbol Description

𝑁 Total number of processes. 𝑁 = 𝑘. 𝑟

𝑟 Number of racks

𝑘 Number of nodes within each rack

𝑥𝑦 𝑥 messages are multicasted to y recipients.

processes in every step, whereas the leader in the parallel
pattern may concurrently communicate with up to k processes
in a rack, or r leaders across racks. We study this factor in
section IV.E. Nevertheless, if the amount of communication
and computation that leaders perform becomes a concern,
implementers can reduce this overhead by choosing a
different pattern (e.g., binomial tree) for communication
within or across racks (Section IV.E presents one example).

B. Exchanged Messages

Table 1 shows the number of messages exchanged in total
and across racks. Section II.B and section III.C present a
sketch of our analysis. Our results show that COOL-P-P
achieves the minimal number of messages of N for
MPI_Reduce, MPI_Gather, MPI_Bcast, and MPI_Scatter.
Furthermore, COOL-P-P achieves the optimal number of
messages across racks for all operations, as it generates fewer
than r messages, which is the absolute minimum required for
exchanging data between r racks. This impressive result is
due to two design decisions: first, the cross-rack
communication is only done between r rack leaders, and
second, IP-level multicasting is used for all multicast phases
in MPI_Bcast, MPI_Allreduce, and MPI_Allgather, leading
to a significant reduction in the number of messages sent.
Here, we count a multicast message as a single sent message,
although its overhead is higher than that of a single message.
The following subsection addresses this issue.

Compared with other patterns, COOL-P-P reduces the
number of exchanged messages by a factor of log N to N for
all patterns except for the binomial tree pattern. If process
ranks are ordered in a rack-aware fashion, something
classical MPI implementations cannot do (discussed at the
beginning of this section), the binomial tree pattern can
minimize cross-rack communication. On the other hand, the
binomial tree pattern significantly increases the number of
steps that the operation takes to log N steps.

Figure 3. Network model. Tree topology with a single core switch.

Solid arrows illustrate the path for a message across racks, dashed

arrows illustrate the path for a message within a rack.

C. Network Load

We compare the total network load generated by the different
operation-pattern combinations. The total network load
metric aggregates the load generated (i.e., number of
messages) on every link in the topology. In our analysis, we
assume a simple network topology with a single core switch
connecting all racks (Figure 3). For instance, a message from
one node to another node in the same rack uses two links
(dashed arrows in Figure 3), whereas a message across racks

traverses four links (solid arrows in Figure 3). Our analysis is
conservative; a typical data center network is more complex.
Hence, a single message will traverse more core links than in
our model, which amplifies the difference between COOL
and the classical implementations.

Table 3 presents the total load generated and the load on
the network across racks. It suffices to compare the various
entries in Table 3 asymptotically. The results indicate that
COOL-P-P reduces the network load by a factor of 2 to k in
most cases for both the total network load and the load across
racks. This significant reduction in the network load is a
result of three factors: the explicit control of communication
across racks, the use of the parallel pattern, which is highly
efficient for small groups, and the use of network-optimal
paths for multicast messages. Multicasting is used in three
operations: MPI_Bcast, MPI_Allreduce, and MPI_Allgather.

The binomial tree pattern performance is comparable to
COOL-P-P performance in MPI_Reduce, MPI_Scatter, and
MPI_Gather, whereas it doubles the network load in
MPI_Bcast. Nevertheless, the binomial tree pattern takes
𝑂(𝑙𝑜𝑔 𝑁) more steps to complete. Because the binomial tree
pattern has different best rankings for different operations,
achieving the best binomial tree performance for all
operations is infeasible in classical implementations.

Table 3. Load analysis. The table presents the total network load,

network load across racks, and the maximum load on processes at

any step in the operation. COOL-P-P uses the parallel pattern for

communication within and across racks. COOL-B-R uses binomial

tree pattern within a rack and recursive doubling pattern across racks.

Op. Pattern

Network Load
Max. Proc.

Load

Total
Across

racks

Leader Other

R
ed

u
ce

 COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 1 max (𝑟, 𝑘) 1

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1

Rabenseifner
2(N log N + N log r

+N+r–2)
2𝑁 log 𝑟
+ 2𝑟 − 2

2

A
ll

re
d
u

ce

COOL-P-P 3𝑁 + 2𝑟2 − 2𝑟 𝑟2 max (𝑟, 𝑘) 1

COOL-B-R 3𝑁 + 4𝑟𝑙𝑜𝑔𝑟 − 2𝑟 2𝑟 log 𝑟 2 1

Ring 2(𝑁 − 1)(𝑁 + 𝑟) 2r (N–1) 2

Recursive
doubling

2𝑁 log 𝑁+2𝑁 log 𝑟 2𝑁 log 𝑟 2

Rabenseifner 4𝑁 log 𝑁+4𝑁 log 𝑟 4𝑁 log 𝑟 2

G
at

h
er

COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 1 max (𝑟, 𝑘) 1

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1

A
ll

g
at

h
er

COOL-P-P 3𝑁 + 2𝑟2 − 2𝑟 𝑟2 max (𝑟, 𝑘) 1

Ring 2(𝑁 − 1)(𝑁 + 𝑟) 2r (N–1) 2

Recursive
doubling

2𝑁 log 𝑁+2𝑁 log 𝑟 2𝑁 log 𝑟 2

Bruck
2𝑁(log 𝑁 +

log 𝑟) + 2𝑁 − 2𝑟
2𝑁 log 𝑟
+2N−2r

2

B
ca

st

COOL-P-P 𝑁 + 2𝑟 + 2 𝑟 1 1

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1

S
ca

tt
er

COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 2 max (𝑟, 𝑘) 1

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1

D. Process Load

The parallel pattern completes a collective operation in a
single step at the cost of an increased load on the leader
processes. Hence, the parallel pattern does not scale well for
large groups. Table 3 shows the maximum load generated on
a process at any given step of the operation. The load is
defined as the number of messages sent and received in a
step. As not all processes have the same role in COOL, rack
leaders see a higher load than other processes do. Table 3
indicates that the maximum load on a leader does not exceed
r (the number of racks) or k (the number of nodes in a rack)
messages in any step. We argue that this amount of
concurrent communication and computation can still be
effectively performed by modern cloud machines since k and
r are typically small (a few tens). For instance, a
configuration of 𝑘 = 32, 𝑟 = 32, with 32 processes per node
can support an MPI application with 32𝐾 processes, yet any
collective operation will finish in three steps with a maximum
load on rack leaders not exceeding 32 messages.
Nevertheless, if the amount of communication and
computation that leaders perform in the parallel pattern
becomes a concern, implementers can choose a different
pattern (e.g., binomial tree) for communication within a rack
or across rack leaders (discussed next).

E. COOL Flexibility

To demonstrate COOL’s flexibility, we explore a design for
the MPI_Allreduce operation that has lower network and
process load than COOL-P-P. Excluding the parallel pattern,
which increases the load on leader processes, Table 1 shows
that the binomial tree pattern is the best pattern for the reduce
operation, and recursive doubling is the best pattern for
allreduce. We combine these two patterns to create the
COOL-Binomial-Recursive-doubling (COOL-B-R) pattern.
COOL-B-R uses the binomial tree pattern to reduce the values
in a rack, and recursive doubling to reduce the values across
rack leaders. Finally, the rack leaders multicast the final result
to all processes in their rack.

Our analysis of COOL-B-R (Table 1 and Table 3)
indicates that this composition is a middle ground between
the classical recursive doubling and COOL-P-P pattern.
Compared with COOL-P-P, COOL-B-R increases the
number of steps to 𝑙𝑜𝑔𝑁 + 1 total steps with log r of them
using the core network, and increases the number of
messages exchanged across racks by a factor of log r
(Table 1). On the other hand, COOL-B-R reduces the network
load across racks by a factor or r/2log r and the load on the
leader processes to only two messages (Table 3).

This example demonstrates COOL’s flexibility. This
flexibility facilitates the selection of various communication
patterns that better fit each step of the collective operation.
For instance, COOL-B-R trades more steps for lighter
network and process load.

F. Summary

COOL small subgroups allow the usage of the parallel
pattern. Our evaluation shows that the parallel pattern can
bring significant benefits: COOL-Parallel-Parallel

composition completes any collective operation in three
steps, reduces the cross-rack communication to the absolute
minimum, and sizably reduces the network load. These
improvements come at the cost of a modest increase in load
on leader processes.

Furthermore, our evaluation demonstrates that COOL is
flexible. This flexibility allows implementers to explore the
performance/overhead tradeoffs present in communication
patterns. For instance, the MPI_Allreduce, with the parallel
pattern within and across racks, reduces the number of steps
and the number of messages, but increases the load on leader
processes. Alternatively, combining binomial tree and
recursive doubling reduces the load on the leader processes
and the network load, but increases the number of steps and
the number of messages. Unlike COOL, Classical
communication patterns do not provide the opportunity to
explore these tradeoffs or select the best pattern for every
level of the data center infrastructure.

V. RELATED WORK

Many previous efforts focused on optimizing MPI collective
operations. MPICH [14], Nemesis [28], and hierarchical
collectives [29] optimize collective operations between
processes collocated on the same node using node-local cache
and shared memory. COOL uses similar optimizations to
optimize node-local groups. Furthermore, Mirsadeghi et
al. [30] propose a heuristic to dynamically reorder process
ranks to match the operation’s communication pattern with
the supercomputer architecture. Our evaluation indicates that
this approach is not optimal, our evaluation shows that COOL
brings significant performance gains compared to the classical
communication patterns even if they use the best ranking.

The closest efforts to our work [31, 29] explore a
hierarchical design of some collective operations, such as
MPI_Reduce and MPI_Allreduce. However, these
explorations do not cover all of the collective operations, and
they are not optimized for the data center architecture.
Another close effort is the recent preliminary exploration of
using SDN capabilities to optimize specific collective
operations on fat-tree interconnects [32]. This effort focuses
on optimizing a single collective operation (e.g., broadcast
and reduce) without considering a comprehensive architecture
for MPI collectives in the cloud.

Several studies explore building rack-aware systems. For
example, location-awareness have been suggested in the
context of distributed file systems [33], data processing
engines [34], and big data applications [35]. However, to the
best of our knowledge, this is the first effort to consider a rack-
aware MPI design.

VI. CONCLUSION AND FUTURE WORK

We present COOL, a simple yet generic structure for MPI
collective operations in the cloud. COOL exploits the inherent
access locality between collocated MPI processes on the same
node or in the same rack and reduces cross-rack
communication. To demonstrate the feasibility of our
approach, we present a system design that embodies COOL
and implements frequently used collective operations. Our

analytical evaluation indicates that our design reduces
communication across racks to the bare minimum. Compared
with classical implementations, our design reduces cross-rack
communication by a factor of log N to N for most operations,
and it reduces the network load by a factor of two to k in most
cases. The cost for this performance improvement is a modest
increase in the communication load on leader processes.

We are currently extending MPICH to provide an
implementation for collective implementations using COOL.
Our current effort focuses on extending MPICH with a
network controller, extending the Hydra [36] management
components, and adding new COOL-based implementations
to the MPI collective library.

VII. REFERENCES

[1] Q. He, S. Zhou, B. Kobler, D. Duffy and T. McGlynn, "Case study for
running HPC applications in public clouds," in Proceedings of the 19th
ACM International Symposium on High Performance Distributed
Computing, 2010.

[2] J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec and M. Prange, "Scientific
computing in the cloud," Computing in science & Engineering, vol. 12,
pp. 34-43, 2010.

[3] I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Maheshwari, T. P.
P. Lacerda Ruivo, G. Garzoglio, S. Timm, Y. Zhao and I. Raicu,
"Understanding the performance and potential of cloud computing for
scientific applications," IEEE Transactions on Cloud Computing, vol.
5, pp. 358-371, 2017.

[4] M. Rak, M. Turtur, U. Villano and L. Pino, "A Portable Tool for
Running MPI Applications in the Cloud," in Intelligent Networking
and Collaborative Systems (INCoS), 2014 International Conference
on, 2014.

[5] M. Parashar, M. AbdelBaky, I. Rodero and A. Devarakonda, "Cloud
paradigms and practices for computational and data-enabled science
and engineering," in Computing in Science & Engineering, 2013.

[6] R. da Rosa Righi, V. F. Rodrigues, C. A. Da Costa, G. Galante, L. C.
E. De Bona and T. Ferreto, "Autoelastic: Automatic resource elasticity
for high performance applications in the cloud," in IEEE Transactions
on Cloud Computing, 2016.

[7] K. Yelick, S. Coghlan, B. Draney, R. S. Canon and others, "The
Magellan report on cloud computing for science," US Department of
Energy, Washington DC, USA, Tech. Rep, 2011.

[8] J. Bashor, "Can Cloud Computing Address the Scientific Computing
Requirements for DOE Researchers? Well, Yes, No and Maybe,"
nersc, [Online]. Available: http://www.nersc.gov/news-
publications/nersc-news/nersc-center-news/2012/can-cloud-
computing-address-the-scientific-computing-requirements-for-doe-
researchers-well-yes-no-and-maybe/. [Accessed 8 May 2018].

[9] E. TAYLOR, "DOE's cloud computing project wins "Best Use of HPC
in the Cloud" award," argonne national laboratory, [Online]. Available:
https://www.anl.gov/articles/does-cloud-computing-project-wins-
best-use-hpc-cloud-award. [Accessed 8 May 2018].

[10] "Amazon High Performance Computing (HPC)," [Online]. Available:
https://aws.amazon.com/hpc/. [Accessed 28 01 2018].

[11] "The Power of Bare Metal, the Flexibility of Cloud," Penguin
Computing, [Online]. Available:
https://www.penguincomputing.com/pod-hpc-cloud/. [Accessed 8
May 2018].

[12] M. P. I. Forum, "MPI: A Message-Passing Interface Standard,"
Message Passing Interface Forum, 1994.

[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine and others,
"Open MPI: Goals, concept, and design of a next generation MPI
implementation," in European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting, 2004.

[14] W. Gropp, E. Lusk, N. Doss and A. Skjellum, "A high-performance,
portable implementation of the MPI message passing interface
standard," Parallel computing, vol. 22, pp. 789-828, 1996.

[15] J. Milano, P. Lembke and others, IBM system Blue Gene solution: Blue
Gene/Q hardware overview and installation planning, IBM Redbooks,
2013.

[16] "Cray XC40™ Series Specifications," [Online]. Available:
https://www.cray.com/sites/default/files/
resources/cray_xc40_specifications.pdf. [Accessed Jan 2018].

[17] N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E.
Giampapa, P. Heidelberger, S. Singh, B. D. Steinmacher-Burow, T.
Takken and others, "Blue Gene/L torus interconnection network," IBM
Journal of Research and Development, vol. 49, pp. 265-276, 2005.

[18] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S.
Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow and J. J.
Parker, "The IBM Blue Gene/Q interconnection network and message
unit," in High Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for, 2011.

[19] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J.
Rogers, P. Roth, R. Sankaran, J. S. Vetter and others, "Early evaluation
of IBM BlueGene/P," in Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008.

[20] L. A. Barroso, J. Clidaras and U. Hölzle, "The datacenter as a
computer: An introduction to the design of warehouse-scale
machines," Synthesis lectures on computer architecture, vol. 8, pp. 1-
154, 2013.

[21] R. Rabenseifner, "Automatic MPI counter profiling of all users: First
results on a CRAY T3E 900-512," in Proceedings of the message
passing interface developer’s and user’s conference, 1999.

[22] R. Rabenseifner, "Automatic mpi counter profiling," in 42nd CUG
Conference, 2000.

[23] O. S. Specification, Open Networking Foundation (ONF). Technical
Specification, 2015.

[24] R. Thakur, R. Rabenseifner and W. Gropp, "Optimization of collective
communication operations in MPICH," The International Journal of
High Performance Computing Applications, vol. 19, pp. 49-66, 2005.

[25] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal and D. Weathersby, "Efficient
algorithms for all-to-all communications in multiport message-passing
systems," IEEE Transactions on parallel and distributed systems, vol.
8, no. 11, pp. 1143--1156, 1997.

[26] CISCO, "Data Center: Load Balancing Data Center Services SRND,"
March 2004. [Online]. Available:
https://learningnetwork.cisco.com/docs/DOC-3438. [Accessed 2018].

[27] IEEE Standard for Local and Metropolitan Area Networks– Station
and Media Access Control Connectivity Discovery,pp. 1–204, 2009.

[28] D. Buntinas, G. Mercier and W. Gropp, "Design and evaluation of
Nemesis, a scalable, low-latency, message-passing communication
subsystem," in Cluster Computing and the Grid, 2006. CCGRID 06.
Sixth IEEE International Symposium on, 2006.

[29] H. Zhu, D. Goodell, W. Gropp and R. Thakur, "Hierarchical collectives
in mpich2," in European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, 2009.

[30] S. H. Mirsadeghi and A. Afsahi, "Topology-Aware Rank Reordering
for MPI Collectives," in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016.

[31] K. Hasanov and A. Lastovetsky, "Hierarchical redesign of classic MPI
reduction algorithms," The Journal of Supercomputing, vol. 73, no. 2,
pp. 713-725, 1 February 2017.

[32] H. Morimoto, K. Dashdavaa, K. Takahashi, Y. Kido, S. Date and S.
Shimojo, "Design and Implementation of SDN-enhanced MPI
Broadcast Targeting a Fat-Tree Interconnect," in 2017 International
Conference on High Performance Computing Simulation (HPCS),
2017.

[33] D. Borthakur, "HDFS architecture guide," Hadoop Apache Project,
vol. 53, 2008.

[34] B. Palanisamy, A. Singh, L. Liu and B. Jain, "Purlieus: locality-aware
resource allocation for MapReduce in a cloud," in High Performance
Computing, Networking, Storage and Analysis (SC), 2011
International Conference for, 2011.

[35] M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser, D. O'Hallaron,
J. Cipar, E. Krevat, J. Lopez, M. Stroucken and G. R. Ganger, "Tashi:
location-aware cluster management," in Proceedings of the 1st
workshop on Automated control for datacenters and clouds, 2009.

[36] "Hydra Process Management Framework," [Online]. Available:
https://wiki.mpich.org/mpich/index.php/Hydra_Process_Management
_Framework. [Accessed Feb 2018].

	I. Introduction
	II. Background
	In this section, we present frequently used collective operations, their communication patterns, and an overview of the modern data center architecture.
	A. Most Frequently Used Collective Operations
	B. Common Communication Patterns
	C. Target Deployment

	III. System Design
	A. COOL
	B. Parallel Pattern
	C. COOL Collective Operations
	D. System Architecture

	IV. Evaluation
	A. Operation Latency
	B. Exchanged Messages
	C. Network Load
	D. Process Load
	E. COOL Flexibility
	F. Summary

	V. Related Work
	VI. Conclusion and Future Work
	VII. References

