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Abstract— We present COOL, a simple and generic structure for 
MPI collective operations. COOL enables highly efficient 
designs for all collective operations in the cloud. We then 
present a system design based on COOL that implements 
frequently used collective operations.  Our design efficiently 
uses the intra-rack network while minimizing cross-rack 
communication, thus improving the application performance 
and scalability. We use recent software-defined networking 
capabilities to build optimal network paths for I/O intensive 
collective operations. Our analytical evaluation shows that our 
design imposes the least possible network overhead across 
racks. Furthermore, when compared with OpenMPI and 
MPICH, our design reduces the number of steps to only three, 
decreases the number of exchanged messages by a factor of N, 
the total number of processes, and reduces the network load by 
up to an order of magnitude. These significant improvements 
come at the cost of a modest increase in the computation load on 
a few processes.    

Keywords – MPI, collective operations, communication patterns, 
cloud, software-defined networking 

I. INTRODUCTION 

Cloud infrastructure is increasingly being adopted as a 
platform for high-performance computing (HPC) science and 
engineering applications [1, 2, 3, 4, 5, 6], with major research 
organizations embracing the new platform [7, 8, 9] and cloud 
providers offering clusters targeting HPC applications     
[10, 11]. For HPC applications, the message passing interface 
(MPI) [12] and its classical implementations (e.g.,      
OpenMPI [13] and MPICH [14]) remain a popular 
communication middleware. Among MPI operations, 
collective operations (e.g., broadcast, reduce, scatter, and 
gather) are the most I/O intensive and performance critical.  

Although classical MPI implementations can be deployed 
at cloud data centers, they are inefficient [7]. Historically, MPI 
applications use large-scale supercomputer machines that are 
customized to support MPI collective operations (e.g., IBM 
BlueGene [15] and Cray XC40 [16]). Supercomputers use 
over-provisioned special network topologies (e.g., 3D      
torus [17], 5D torus [18], and Dragonfly [16]), and have 
interconnections optimized for I/O-intensive operations; for 
instance, IBM’s BlueGene comes with a network dedicated to 
collective operations and another one optimized for fast 
barriers [17, 19]. Classical MPI implementations are 
optimized to exploit these capabilities. On the other hand, data 
center networks are drastically different from 
supercomputers’: they do not provide specialized support for 
collective operations, and they adopt a tree topology [20] that 
is well provisioned within racks, but is oversubscribed 
between racks. Oversubscription ratios, the ratio of the 
bandwidth within a rack to the bandwidth across racks, of 

4 times and up to 10 times are common [20]. Consequently, 
reducing the communication across racks is key to achieving 
higher performance and scalability.  

The fundamental reason for the poor performance of 
classical implementations of MPI collective operations in the 
cloud is that they are implemented at the application layer 
using network-oblivious communication patterns [13, 14]. For 
instance, they propagate a broadcast message between 
processes following a tree pattern, or perform a reduction 
following a ring pattern. These patterns do not differentiate 
between local or cross-rack communications, and hence do 
not exploit the inherent locality between collocated processes 
on the same node or the same rack of nodes. Consequently, 
they generate high overhead on the network across racks.  

In this paper, we present the cloud-optimized collective 
structure (COOL) for collective operations. COOL is a simple 
yet generic structure, as it can implement all collective 
operations. COOL divides the group of processes involved in 
a collective operation into a three-level hierarchy of 
subgroups: node level, rack level, and data center level. All 
processes collocated on a node form a subgroup with one 
process being the subgroup leader (or node leader). All node 
leaders in a rack form a subgroup with one of them acting as 
a rack leader. Finally, all rack leaders are part of one data-
center-wide subgroup. Collective operations are composed of 
three parts with each part running at one of the three levels. 
Each level can use the communication pattern that is optimal 
for it. This approach provides the MPI designer with explicit 
control over the communication performed within a node, 
within a rack, and across racks.  

Unlike classical implementations, COOL is flexible. 
Communication patterns typically present a tradeoff between 
the number of steps needed, the number of messages sent, and 
the generated network and process loads. COOL allows 
exploring this tradeoff by combining more than one pattern 
and allows selecting the best pattern for every level (i.e., 
node, rack, and data center levels) of the data center 
infrastructure. 

To demonstrate the feasibility of our approach, we present 
a system architecture that embodies COOL, and detail the 
design for frequently used collective operations. We focus on 
the following collective operations: MPI_Bcast, 
MPI_Reduce, MPI_Allreduce, MPI_Gather, MPI_Allgather, 
and MPI_Scatter. We select these operations because they are 
the most complex, the most I/O intensive, and the most 
frequently used. Characterization studies of MPI applications 
[21, 22] indicate that these operations consume more than 
65% of the total time of all collective operations. The 
proposed design discovers the network topology and uses this 
information to create a subgroup per rack and to select rack 



leaders. Furthermore, the design leverages the software-
defined networking (SDN) [23] capabilities of modern 
switches to build a hierarchy of multicast trees to support 
MPI_Bcast, MPI_Allreduce, and MPI_Allgather. 

Our analysis shows that COOL-based collective 
operations impose the least possible network overhead across 
racks. Furthermore, we compare our design with OpenMPI 
and MPICH in terms of the number of steps that each 
operation takes, the number of exchanged messages, and the 
generated load on the network and nodes. Our evaluation 
reveals that COOL-based design brings significant 
performance gains: it completes all operations in three steps, 
it reduces the number of messages across racks to the bare 
minimum, it reduces the total number of messages by a factor 
of N in most cases, where N is the number of processes, and it 
reduces the generated network overhead by up to an order of 
magnitude. These improvements come at a cost: a modest 
increase in the load of leader processes. 

The rest of this paper is organized as follows. In Section II 
we present the classical design of the most frequently used 
MPI collective operations. We present the COOL structure 
and a system design that embodies it in Section III. We present 
the analytical evaluation in Section IV. We discuss related 
work in Section V, and conclude in Section VI. 

II. BACKGROUND 

In this section, we present frequently used collective 
operations, their communication patterns, and an overview of 
the modern data center architecture. 

A. Most Frequently Used Collective Operations 

Collective operations are the most network-intensive 
operations in MPI; they involve communicating with all the 
processes in a communication group, typically over many 
steps. The following list enumerates frequently used 
collective operations. Characterization studies of MPI 
applications [21, 22] indicate that the following operations 
consume more than 65% of the CPU time that all MPI 
collective operations use. 

• MPI_Reduce: applies an aggregation operation (e.g., 
summation and multiplication) to data items distributed 
across a group and makes the result available in one 
process only. 

• MPI_Allreduce: similar to MPI_Reduce, but the final 
result is available in all processes in a group.  

• MPI_Gather: collects data items from all processes in a 
group, and concatenates them into an array in one 
process. 

• MPI_Allgather: similar to MPI_Gather, but the final 
array is available in all processes in a group. 

• MPI_Bcast: broadcasts a message from one process to all 
processes in a group. 

• MPI_Scatter: chunks and distributes an array from one 
process to all processes in a group.  

B. Common Communication Patterns 

Classical MPI implementations implement collective 
operations at the application layer using network-oblivious 
communication patterns. Typically, MPI implementations 
have multiple implementations for the same operation, with 
each using a different communication pattern [13, 14]. 
Nevertheless, all classical patterns are network oblivious; 
they assume that the communication cost between any two 
processes is equal, regardless of the network topology. This 
assumption leads to high inefficiency in tree-based 
topologies. Communication patterns use logical addresses 
(a.k.a. ranks): consecutive numbers that identify processes 
within a group. The following is a list of common 
communication patterns used in OpenMPI and MPICH: 

• Recursive doubling is used in MPI_Allreduce and 
MPI_Allgather. It takes log 𝑁 steps, and in every step i, 

every process exchanges values with the process 2𝑖 ranks 
away (Figure 1.a). N messages are sent per step. 
Recursive doubling uses 𝑁 log 𝑁 messages to complete. 

• Ring is used in MPI_Allreduce and MPI_Allgather. The 
ring pattern organizes the processes in a ring. It takes  
𝑁 − 1 steps, and in each step, every process receives a 
message from its predecessor in the ring and sends a 
message to its successor. The ring pattern requires   
𝑁(𝑁 − 1) messages to complete. 

• Binomial tree is used in MPI_Bcast, MPI_Gather, 
MPI_Scatter, and MPI_Reduce. It takes log 𝑁  steps to 
complete. For instance, in every step of MPI_Gather 
(Figure 1.b), processes are divided into two halves; one 
half sends the data it gathered so far to the other half. The 
receiving half repeats this procedure until a single process 
is left. That process will have all data items from all 
processes. Binomial tree pattern takes 𝑁 − 1 messages to 
complete. 

• Rabenseifner’s pattern [24] is used in MPI_Reduce and 
MPI_Allreduce. Rabenseifner’s pattern combines two 
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Figure 1. Collective communication patterns: (a) recursive 
doubling, (b) binomial tree, (c) Bruck’s, and (d) COOL with the 
parallel pattern. Circles represent processes, numbers indicate the 
processes ranks, and arrows represent the direction of 
communication. Double arrows indicate that the two processes 
exchange messages. Numbers on arrows in (d) represent the three 
steps of a COOL-based MPI_Bcast. 



patterns: first, it uses the recursive halving pattern 
(similar to recursive doubling), and then, it uses the 
binomial tree pattern for MPI_Reduce, or the recursive 
doubling pattern for MPI_Allreduce. Rabenseifner’s 
pattern takes 2 log 𝑁 steps to complete, and it exchanges 
𝑁 + 𝑁 log 𝑁  and 2𝑁 log 𝑁  messages for MPI_Reduce 
and MPI_Allreduce, respectively. 

• Bruck’s pattern [25] is used in MPI_Allgather. It takes 
log 𝑁 steps, and in every step 𝑖, every process 𝑝 sends its 
data and all of the data it has received so far to the process 

with rank (𝑝 − 2𝑖) 𝑚𝑜𝑑 𝑁 (Figure 1.c). N messages are 
sent in every step. This pattern takes 𝑁 log 𝑁 messages to 
complete. 

C. Target Deployment 

Modern data centers adopt a tree-based topology [20, 26], in 
which nodes are organized in racks (e.g., each rack has 48 
nodes) with each connected to the data center through a top of 
the rack (ToR) switch. ToRs are connected via two-tier 
switching fabric of aggregation and core switches. The inter-
rack fabric is typically oversubscribed, i.e., the bandwidth 
across racks is a fraction of the bandwidth available within a 
rack. Oversubscription ratios of 4 times to 10 times are 
common [20]. Consequently, increasing communication 
locality within racks is key to achieving higher performance 
and scalability.  

Furthermore, modern data centers adopt SDN-capable 
switches. This new networking paradigm facilitates the 
external control of network operations. The OpenFlow 
standard API [23] provides per-packet control of network 
operations. Developers can use this capability to build 
network-optimal multicasting trees for I/O intensive broadcast 
operations.  

Large-scale science applications utilize hundreds to 
thousands of nodes spanning tens of racks. Unfortunately, 
classical collective implementations are network oblivious, as 
they do not differentiate between communication within a 
rack or across racks, and they do not exploit the recent SDN 
capability to optimize the data paths for collective operations. 

COOL enables collective operation designs that better fit 
the data center infrastructure than classical collective 
implementations. In particular, it enables the utilization of the 
access locality between processes collocated on a node, or on 
nodes on the same rack, and enables the exploitation of the 
SDN capability to build efficient network paths for multicast-
based data transfers within and across racks. 

III. SYSTEM DESIGN 

In this section, we first introduce the COOL structure, then we 
present a new communication pattern that better fits COOL 
small subgroups, as well as a system architecture that 
embodies COOL. Finally, we discuss the design of the most 
frequently used collective operations.  

A. COOL 

The COOL structure adopts a hierarchical approach to 
perform collective operations. COOL divides the 
communication group into a set of subgroups (Figure 1.d). 

Each subgroup has a leader process. All collocated processes 
on a node form a subgroup with one process being the 
subgroup leader (or node leader). All node leaders in a rack 
form a subgroup with one of them acting as a rack leader. 
Finally, all rack leaders are part of one data-center-wide 
subgroup. Subgroups are small, consisting of a few tens of 
processes. During the collective operation, a process can 
exchange messages with only the processes in its subgroup. 
Only a subgroup leader can exchange messages with other 
subgroup leaders at its level.  

Typically, a COOL collective operation proceeds in 
phases. The order of these phases depends on the collective 
operation. First, part of the collective operation is performed 
in parallel in all node-level subgroups. Second, the node 
leaders perform part of the operation per rack. Third, rack 
leaders complete the operation across racks. Finally, the 
result is propagated down the hierarchy to a specific process 
or to all processes. COOL does not dictate which 
communication pattern should be used within a subgroup; an 
implementer can choose different communication patterns 
within and across subgroups. This flexibility allows selecting 
the best pattern for each subgroup. For instance, an 
implementer may choose, for the rack-level subgroup, a 
pattern that completes in a few steps but imposes a high 
network overhead, and may choose a more network 
conscience pattern for the cross-rack level even if it slightly 
increases the number of steps.  

As an example, consider the MPI_Bcast operation, and, 
for simplicity, assume one process per node. In a COOL 
MPI_Bcast, the source process of the broadcast message 
sends the message to its rack leader (phase 1 in Figure 1.d). 
Then, the leader multicasts the message to the other rack 
leaders (phase 2). Finally, all leaders multicast the message 
to the processes in their racks (phase 3). Different 
communication patterns can be employed to perform phase 
2 or 3. 

The main advantage of COOL is that it provides explicit 
control of the communication within and across racks, and 
enables optimizing the communication at every level of the 
operation. This approach facilitates tailoring communication 
patterns to minimize the communication between racks.  

B. Parallel Pattern 

We present the parallel communication pattern, a simple 
pattern that efficiently implements all collective operations 
for small groups. In the parallel pattern, all processes 
exchange messages with a single process that does all of the 
necessary computation. For instance, in a parallel 
MPI_Reduce, all processes send their data to a single process 
that performs the reduction operation. Similarly, in a parallel 
MPI_Bcast, a single process sends a message to all processes 
in its group. The parallel pattern completes any collective 
operation in one or two steps, but it does not scale to large 
deployments. 

The parallel pattern can be efficiently implemented in 
small groups of a few tens of processes, as is the case in 
COOL subgroups. For processes collocated on the same 
node, the parallel pattern can be efficiently implemented 



using shared memory. For operations that involve sending the 
same message to multiple recipients the parallel pattern can 
exploit SDN capabilities to construct network-optimal 
multicast trees. 

C. COOL Collective Operations 

COOL is generic; it can be used to optimize all collective 
operations for cloud deployments. The following list presents 
a COOL design for the frequently used collective operations 
discussed in section II.A. Although COOL can employ 
various communication patterns at different levels, for 
simplicity, we present a design using the parallel pattern at 
all levels. We omit the discussion about the communication 
between processes collocated on the same node, as it can be 
efficiently implemented with the parallel pattern by using 
shared memory, and it has, relatively, a negligible impact on 
performance. Hence, we assume a single process per node. 

In the descriptions below, the root process refers to the 
source process sending a broadcast message in MPI_Bcast, 
or the destination process in MPI_Reduce and MPI_Gather. 
The root leader refers to the leader of the rack that contains 
the operation root process. We also present the number of 
messages exchanged in every operation. The system has N 
nodes, with each running a single process. The nodes are 
organized in r racks, with r rack leaders. 

• MPI_Reduce: (1) Each process sends its value to its rack 
leader (using 𝑁 − 𝑟 messages). Each leader reduces the 
values of its subgroup to an intermediate value. (2) All 
leaders send their intermediate values to the root leader 
(using 𝑟 − 1 messages). The root leader reduces all the 
values it receives to a single final value. Finally, (3) the 
root leader forwards the final value to the root process (in 
a single message). This approach requires a total of N 
messages. 

• MPI_Allreduce: (1) Each process sends its value to its 
rack leader (𝑁 − 𝑟 messages). Each leader reduces the 
values of its subgroup to an intermediate value. (2) All 
leaders multicast their intermediate values to all other 
leaders (𝑟 multicast messages). Every leader reduces all 
of the values it receives to a single final value. Finally, (3) 
every leader multicasts the final value to its rack 
subgroup (𝑟 multicast messages). This approach requires 
a total of 𝑁 − 𝑟 messages and 2r multicast messages. 

• MPI_Gather: (1) Each process sends its value to its rack 
leader (𝑁 − 𝑟  messages). Each leader concatenates the 
values of its subgroup into a subarray. (2) All leaders send 
their subarrays to the root leader (𝑟 − 1 messages). The 
root leader concatenates all the subarrays it receives into 
a single final array. Finally, (3) the root leader forwards 
the final array to the root process (in a single message). 
This approach requires N messages in total. 

• MPI_Allgather: (1) Each process sends its value to its 
rack leader (𝑁 − 𝑟 messages). Each leader concatenates 
all the values of its subgroup into a subarray. (2) All 
leaders multicast their subarrays to all other leaders (r 
multicast messages). Every leader concatenates all of the 
subarrays it receives into a single final array. Finally, (3) 
every leader multicasts the final array to its rack subgroup 

(r multicast messages). This approach requires the total 
of 𝑁 − 𝑟 messages and 2r multicast messages. 

• MPI_Bcast: (1) The root process sends its value to the 
root leader (one message). (2) The root leader multicasts 
the value to all other leaders (one multicast message). 
Finally, (3) every leader multicasts the value to its 
subgroup (r multicast messages). This approach requires 
one message and 𝑟 + 1 multicast messages. 

• MPI_Scatter: (1) The root process sends its array to the 
root leader (one message). (2) The root leader chunks the 
array into r subarrays, keeps one subarray and send a 
subarray to every leader (𝑟 − 1 messages). Finally, (3) 
every leader, including the root leader, sends the 
individual data items from its subarray to every process 
in its subgroup (𝑁 − 𝑟 messages). This approach requires 
a total of N messages. 

We note that all operations complete in only three steps, and 
use the network across racks only in step 2. The next section 
extends our analysis and compares our design with OpenMPI 
and MPICH implementations. 

 

Figure 2. System Architecture. Bold lines represent network 

connections. Solid arrows represent communication messages. 

Dashed arrows represent OpenFlow control messages. 

D. System Architecture 

The goal of this section is to demonstrate the feasibility of 
building an MPI implementation that embodies COOL. Our 
system architecture has four components (Figure 2): an MPI 
manager, rack leaders, a network controller, and a COOL 
library. The MPI manager controls the MPI application 
lifecycle from allocating resources, to bootstrapping the MPI 
processes, to terminating the application. All processes are 
grouped into subgroups at the node, rack, and data center 
levels.  The network controller is an OpenFlow-based 
controller that manages all the switches in the deployment. 
The network controller installs packet-forwarding rules to 
create a hierarchy of multicast trees for each communication 
group. The COOL library implements all collective 
operations as discussed in the previous subsection. 

Bootstrap process. As depicted in Figure 2, when a client 
starts a new job, it sends the job parameters to the MPI 



manager (step 1 in Figure 2). The manager allocates a number 
of nodes (2). Then, the network controller configures the 
network for the MPI job (3). The controller first discovers the 
network topology connecting the allocated nodes using the 
Link Layer Discovery Protocol (LLDP) protocol [27]. The 
discovery step identifies the racks, assigns them serial 
identification (ID) numbers, and discovers which nodes are 
in each rack (4). Then, the controller divides the group of MPI 
processes into per-node and per-rack subgroups. 
Additionally, for each subgroup, it selects as the leader the 
process with the smallest rank in the subgroup. Finally, (5) 
the manager runs the MPI processes on the allocated nodes. 
The manager informs every MPI process of the node and rack 
leaders, as well as the rank and rack ID of all other processes. 

Group creation. When an MPI application creates a new 

communication group (6) the leader of the first rack (i.e., rack 

0) informs the controller of the new group. As in the bootstrap 

process, the controller divides the processes into subgroups, 

with each one of them containing all the processes collocated 

in the same rack, and chooses a leader for each subgroup. The 

controller also creates, using OpenFlow, a multicast tree in 

every rack, and creates a multicast tree for rack leaders across 

racks.  

IV. EVALUATION 

In this section, we analytically compare COOL collective 
operations with OpenMPI and MPICH. We focus our 
evaluation on four metrics: the number of steps an operation 
takes, the number of messages exchanged in total and across 
racks, the generated network load in total and across racks, 
and the maximum generated load on processes.  

Assumptions. To simplify our analysis, we assume that all 
COOL subgroups are equal in size and that the total number 
of nodes and the number of nodes in every rack is a power of 
two. We assume that every node runs a single MPI process, as 
communication between collocated processes on the same 
node adds a relatively negligible overhead. 

The performance of the classical implementations of 
collective operations is affected by how the processes are 
ranked, which affects the communication order. In our 
evaluation, we select the best ranking that minimizes the 
number of cross-rack messages for each operation-pattern 
combination. We note that it is infeasible for classical MPI 
implementations to use these best rankings because a 
communication group typically uses multiple collective 
operations, each of which has a different best ranking, yet 
processes in a group have fixed ranks. Collective operations 
have different best rankings even if they use the same pattern. 
For instance, the best ranking for the binomial tree pattern in 
MPI_Bcast is different than the best ranking used for the 
binomial tree in MPI_Reduce. 

For COOL, we analyze the COOL-Parallel-Parallel 
(COOL-P-P) that uses the parallel pattern within and across 
racks. Section IV.E discusses a COOL-based design that uses 
the binomial tree and the recursive doubling patterns. 

A. Operation Latency 

Each step includes a communication phase, which consists of 
a concurrent exchange of data with one or more processes, 
and a computation phase for MPI_Reduce and 
MPI_Allreduce. Table 1 summarizes our results (section II.B 
and section III.C present a sketch of our analysis). Table 1 
shows the total number of steps that various implementations 
of the collective operations require, and shows the number of 
steps that use the inter-rack links (Table 2 explains the 
parameters used in Table 1). Classical implementations take 
from log 𝑁 to 𝑁 steps to complete with log r to N of the steps 
using the network across racks. COOL-P-P operations 
complete in three steps, with only one step using the network 
across racks. This is a byproduct of using the parallel pattern, 
as it can complete its part in a single step, and the hierarchical 
design, as it confines the cross-rack communication to a 
single step.  

Obviously, a step in the parallel pattern has a higher 
overhead than a step in the other patterns. A process in the 
classical patterns exchanges messages with one or two 

Table 1. An analytical comparison of COOL-based collective 

operations against classical implementations. COOL-P-P uses the 

parallel pattern for communication within and across racks.  COOL-

B-R uses the binomial tree pattern within a rack and recursive 

doubling pattern across racks. The analysis assumes the best 

ranking for classical implementations which achieves the least 

possible cross-rack communication. 

Op.  Pattern 

# of steps Number of messages 

Total 
Across 

racks 
Total Across racks 

R
ed

u
ce

 COOL-P-P 3 1 𝑁 𝑟 − 1 

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1 

Rabenseifner 2 log 𝑁 2 log 𝑟 NlogN +N–1 𝑁 log 𝑟+r–1 

A
ll

re
d
u

ce
 

COOL-P-P 3 1 N–r+rr+𝑟𝑘 𝑟𝑟 

COOL-B-R log 𝑁+1 log 𝑟 N–r+rlogr+𝑟𝑘 𝑟 log 𝑟 

Ring 𝑁 − 1 𝑁 − 1 𝑁(𝑁 − 1) 𝑁 𝑟 

Recursive 
doubling 

log 𝑁 log 𝑟 𝑁 log 𝑁 𝑁 log 𝑟 

Rabenseifner 2 log 𝑁 2 log 𝑟 2𝑁 log 𝑁 2𝑁 log 𝑟 

G
at

h
er

 

COOL-P-P 3 1 𝑁 𝑟 − 1 

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1 

A
ll

g
at

h
er

 

COOL-P-P 3 1 N–r+rr+rk 𝑟𝑟 

Ring 𝑁 − 1 𝑁 − 1 𝑁(𝑁 − 1) 𝑁 𝑟 

Recursive 
doubling 

log 𝑁 log 𝑟 𝑁 log 𝑁 𝑁 log 𝑟 

Bruck log 𝑁 log 𝑁 𝑁 log 𝑁 𝑁 log 𝑟+N–r 

B
ca

st
 

COOL-P-P 3 1 𝑟𝑘 + 1𝑟 + 1 1𝑟 

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1 

S
ca

tt
er

 

COOL-P-P 3 1 𝑁 𝑟 − 1 

Binomial tree log 𝑁 log 𝑟 𝑁 − 1 𝑟 − 1 

Table 2. Analytical model parameters. 

Symbol Description 

𝑁 Total number of processes. 𝑁 = 𝑘. 𝑟 

𝑟 Number of racks 

𝑘 Number of nodes within each rack 

𝑥𝑦 𝑥 messages are multicasted to y recipients.  



processes in every step, whereas the leader in the parallel 
pattern may concurrently communicate with up to k processes 
in a rack, or r leaders across racks. We study this factor in 
section IV.E. Nevertheless, if the amount of communication 
and computation that leaders perform becomes a concern, 
implementers can reduce this overhead by choosing a 
different pattern (e.g., binomial tree) for communication 
within or across racks (Section IV.E presents one example). 

B. Exchanged Messages 

Table 1 shows the number of messages exchanged in total 
and across racks. Section II.B and section III.C present a 
sketch of our analysis. Our results show that COOL-P-P 
achieves the minimal number of messages of N for 
MPI_Reduce, MPI_Gather, MPI_Bcast, and MPI_Scatter. 
Furthermore, COOL-P-P achieves the optimal number of 
messages across racks for all operations, as it generates fewer 
than r messages, which is the absolute minimum required for 
exchanging data between r racks.  This impressive result is 
due to two design decisions: first, the cross-rack 
communication is only done between r rack leaders, and 
second, IP-level multicasting is used for all multicast phases 
in MPI_Bcast, MPI_Allreduce, and MPI_Allgather, leading 
to a significant reduction in the number of messages sent. 
Here, we count a multicast message as a single sent message, 
although its overhead is higher than that of a single message. 
The following subsection addresses this issue. 

Compared with other patterns, COOL-P-P reduces the 
number of exchanged messages by a factor of log N to N for 
all patterns except for the binomial tree pattern. If process 
ranks are ordered in a rack-aware fashion, something 
classical MPI implementations cannot do (discussed at the 
beginning of this section), the binomial tree pattern can 
minimize cross-rack communication. On the other hand, the 
binomial tree pattern significantly increases the number of 
steps that the operation takes to log N steps. 

 

Figure 3. Network model. Tree topology with a single core switch. 

Solid arrows illustrate the path for a message across racks, dashed 

arrows illustrate the path for a message within a rack. 

C. Network Load 

We compare the total network load generated by the different 
operation-pattern combinations. The total network load 
metric aggregates the load generated (i.e., number of 
messages) on every link in the topology. In our analysis, we 
assume a simple network topology with a single core switch 
connecting all racks (Figure 3). For instance, a message from 
one node to another node in the same rack uses two links 
(dashed arrows in Figure 3), whereas a message across racks 

traverses four links (solid arrows in Figure 3). Our analysis is 
conservative; a typical data center network is more complex. 
Hence, a single message will traverse more core links than in 
our model, which amplifies the difference between COOL 
and the classical implementations.  

Table 3 presents the total load generated and the load on 
the network across racks. It suffices to compare the various 
entries in Table 3 asymptotically. The results indicate that 
COOL-P-P reduces the network load by a factor of 2 to k in 
most cases for both the total network load and the load across 
racks. This significant reduction in the network load is a 
result of three factors: the explicit control of communication 
across racks, the use of the parallel pattern, which is highly 
efficient for small groups, and the use of network-optimal 
paths for multicast messages. Multicasting is used in three 
operations: MPI_Bcast, MPI_Allreduce, and MPI_Allgather.  

The binomial tree pattern performance is comparable to 
COOL-P-P performance in MPI_Reduce, MPI_Scatter, and 
MPI_Gather, whereas it doubles the network load in 
MPI_Bcast. Nevertheless, the binomial tree pattern takes 
𝑂(𝑙𝑜𝑔 𝑁) more steps to complete. Because the binomial tree 
pattern has different best rankings for different operations, 
achieving the best binomial tree performance for all 
operations is infeasible in classical implementations. 

Table 3.  Load analysis. The table presents the total network load, 

network load across racks, and the maximum load on processes at 

any step in the operation. COOL-P-P uses the parallel pattern for 

communication within and across racks.  COOL-B-R uses binomial 

tree pattern within a rack and recursive doubling pattern across racks. 

Op.  Pattern 

Network Load 
Max. Proc. 

Load 

Total 
Across 

racks 

Leader Other 

R
ed

u
ce

 COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 1 max (𝑟, 𝑘) 1 

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1 

Rabenseifner 
2(N log N + N log r 

+N+r–2)  
2𝑁 log 𝑟
+ 2𝑟 − 2 

2 

A
ll

re
d
u

ce
 

COOL-P-P 3𝑁 + 2𝑟2 − 2𝑟 𝑟2 max (𝑟, 𝑘) 1 

COOL-B-R 3𝑁 + 4𝑟𝑙𝑜𝑔𝑟 − 2𝑟 2𝑟 log 𝑟 2 1 

Ring 2(𝑁 − 1)(𝑁 + 𝑟) 2r (N–1) 2 

Recursive 
doubling 

2𝑁 log 𝑁+2𝑁 log 𝑟 2𝑁 log 𝑟 2 

Rabenseifner 4𝑁 log 𝑁+4𝑁 log 𝑟 4𝑁 log 𝑟 2 

G
at

h
er

 

COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 1 max (𝑟, 𝑘) 1 

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1 

A
ll

g
at

h
er

 
COOL-P-P 3𝑁 + 2𝑟2 − 2𝑟 𝑟2 max (𝑟, 𝑘) 1 

Ring 2(𝑁 − 1)(𝑁 + 𝑟) 2r (N–1) 2 

Recursive 
doubling 

2𝑁 log 𝑁+2𝑁 log 𝑟 2𝑁 log 𝑟 2 

Bruck 
2𝑁(log 𝑁 +

log 𝑟) + 2𝑁 − 2𝑟  
2𝑁 log 𝑟
+2N−2r 

2 

B
ca

st
 

COOL-P-P 𝑁 + 2𝑟 + 2 𝑟 1 1 

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1 

S
ca

tt
er

 

COOL-P-P 2𝑁 + 2𝑟 − 2 2𝑟 − 2 max (𝑟, 𝑘) 1 

Binomial tree 2𝑁 + 2𝑟 − 4 2𝑟 − 2 1 



D. Process Load 

The parallel pattern completes a collective operation in a 
single step at the cost of an increased load on the leader 
processes. Hence, the parallel pattern does not scale well for 
large groups. Table 3 shows the maximum load generated on 
a process at any given step of the operation. The load is 
defined as the number of messages sent and received in a 
step. As not all processes have the same role in COOL, rack 
leaders see a higher load than other processes do. Table 3 
indicates that the maximum load on a leader does not exceed 
r (the number of racks) or k (the number of nodes in a rack) 
messages in any step. We argue that this amount of 
concurrent communication and computation can still be 
effectively performed by modern cloud machines since k and 
r are typically small (a few tens). For instance, a 
configuration of 𝑘 = 32, 𝑟 = 32, with 32 processes per node 
can support an MPI application with 32𝐾 processes, yet any 
collective operation will finish in three steps with a maximum 
load on rack leaders not exceeding 32 messages. 
Nevertheless, if the amount of communication and 
computation that leaders perform in the parallel pattern 
becomes a concern, implementers can choose a different 
pattern (e.g., binomial tree) for communication within a rack 
or across rack leaders (discussed next).  

E. COOL Flexibility 

To demonstrate COOL’s flexibility, we explore a design for 
the MPI_Allreduce operation that has lower network and 
process load than COOL-P-P. Excluding the parallel pattern, 
which increases the load on leader processes, Table 1 shows 
that the binomial tree pattern is the best pattern for the reduce 
operation, and recursive doubling is the best pattern for 
allreduce. We combine these two patterns to create the 
COOL-Binomial-Recursive-doubling (COOL-B-R) pattern. 
COOL-B-R uses the binomial tree pattern to reduce the values 
in a rack, and recursive doubling to reduce the values across 
rack leaders. Finally, the rack leaders multicast the final result 
to all processes in their rack.  

Our analysis of COOL-B-R (Table 1 and Table 3) 
indicates that this composition is a middle ground between 
the classical recursive doubling and COOL-P-P pattern. 
Compared with COOL-P-P, COOL-B-R increases the 
number of steps to 𝑙𝑜𝑔𝑁 + 1 total steps with log r of them 
using the core network, and increases the number of 
messages exchanged across racks by a factor of log r      
(Table 1). On the other hand, COOL-B-R reduces the network 
load across racks by a factor or r/2log r and the load on the 
leader processes to only two messages (Table 3). 

This example demonstrates COOL’s flexibility. This 
flexibility facilitates the selection of various communication 
patterns that better fit each step of the collective operation. 
For instance, COOL-B-R trades more steps for lighter 
network and process load. 

F. Summary 

COOL small subgroups allow the usage of the parallel 
pattern. Our evaluation shows that the parallel pattern can 
bring significant benefits: COOL-Parallel-Parallel 

composition completes any collective operation in three 
steps, reduces the cross-rack communication to the absolute 
minimum, and sizably reduces the network load. These 
improvements come at the cost of a modest increase in load 
on leader processes. 

Furthermore, our evaluation demonstrates that COOL is 
flexible. This flexibility allows implementers to explore the 
performance/overhead tradeoffs present in communication 
patterns. For instance, the MPI_Allreduce, with the parallel 
pattern within and across racks, reduces the number of steps 
and the number of messages, but increases the load on leader 
processes. Alternatively, combining binomial tree and 
recursive doubling reduces the load on the leader processes 
and the network load, but increases the number of steps and 
the number of messages. Unlike COOL, Classical 
communication patterns do not provide the opportunity to 
explore these tradeoffs or select the best pattern for every 
level of the data center infrastructure.  

V. RELATED WORK 

Many previous efforts focused on optimizing MPI collective 
operations. MPICH [14], Nemesis [28], and hierarchical 
collectives [29] optimize collective operations between 
processes collocated on the same node using node-local cache 
and shared memory. COOL uses similar optimizations to 
optimize node-local groups. Furthermore, Mirsadeghi et 
al. [30] propose a heuristic to dynamically reorder process 
ranks to match the operation’s communication pattern with 
the supercomputer architecture. Our evaluation indicates that 
this approach is not optimal, our evaluation shows that COOL 
brings significant performance gains compared to the classical 
communication patterns even if they use the best ranking. 

The closest efforts to our work [31, 29] explore a 
hierarchical design of some collective operations, such as 
MPI_Reduce and MPI_Allreduce. However, these 
explorations do not cover all of the collective operations, and 
they are not optimized for the data center architecture. 
Another close effort is the recent preliminary exploration of 
using SDN capabilities to optimize specific collective 
operations on fat-tree interconnects [32]. This effort focuses 
on optimizing a single collective operation (e.g., broadcast 
and reduce) without considering a comprehensive architecture 
for MPI collectives in the cloud. 

Several studies explore building rack-aware systems.  For 
example, location-awareness have been suggested in the 
context of distributed file systems [33], data processing 
engines [34], and big data applications [35]. However, to the 
best of our knowledge, this is the first effort to consider a rack-
aware MPI design. 

VI. CONCLUSION AND FUTURE WORK 

We present COOL, a simple yet generic structure for MPI 
collective operations in the cloud. COOL exploits the inherent 
access locality between collocated MPI processes on the same 
node or in the same rack and reduces cross-rack 
communication. To demonstrate the feasibility of our 
approach, we present a system design that embodies COOL 
and implements frequently used collective operations. Our 



analytical evaluation indicates that our design reduces 
communication across racks to the bare minimum. Compared 
with classical implementations, our design reduces cross-rack 
communication by a factor of log N to N for most operations, 
and it reduces the network load by a factor of two to k in most 
cases. The cost for this performance improvement is a modest 
increase in the communication load on leader processes. 

We are currently extending MPICH to provide an 
implementation for collective implementations using COOL. 
Our current effort focuses on extending MPICH with a 
network controller, extending the Hydra [36] management 
components, and adding new COOL-based implementations 
to the MPI collective library. 
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